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Abstract-The critical hoop thrust which destabilizes buried flexible pipes and culverts can be an
important consideration when designing structures of this type. Often, the structure is placed ina
small zone of good quality backfill which is in tum surrounded by another poorer quality soil.
Critical hoop thrust is studied for flexible cylinders with nonuniform solid support.

A closed form linear buckling solution is described, in addition to finite element results. The
solutions presented can be used to assess the elastic stability ofcircular structures in square, circular
and rectangular zones ofelastic solid. The effects of modulus and the size of the envelope of higher
modulus solid, as well as burial depth are examined. The behaviour of cylinders is also considered
for a "Gibson" material which has modulus variation with depth, and for elliptical cylinders.

INTRODUCTION

Flexible structures are often buried for use as pipelines and culverts under road and railway
embankments. Earth loads and line loads acting on these structures can lead to significant
compressive hoop thrusts around the pipe circumference. These compressive hoop thrusts
can lead to buckling instability.

Reviews ofexperimental data and theoretical predictions ofcritical hoop thrust (Gum.
bel, 1983; Moore, 1989) have established that linear buckling solutions employing an elastic
continuum solution to model the surrounding soil can provide useful measures of buckling
strength. The theoretical solutions available feature deep or shallow burial of a circular
cylindrical shell embedded in a uniform isotropic elastic continuum (Forrestal and Herrm·
ann, 1965; Moore and Booker, 1985a, b; Moore, 1987).

In practice, however, the backfill soil placed directly adjacent to the structure is
specially selected and of better quality than the soil beyond this zone. A suitable method is
needed for determining the influence on buckling strength of the quality and quantity of
the specially selected backfill soil and the quality of the soil beyond it.

Figure 1 shows the geometry ofthe problem examined in this paper. A flexible structure
is buried in a zone of high modulus material (select backfill), which is in turn surrounded
by a zone ofpoorer quality materiaL This situation is examined for two conditions, that of
deep burial within an elastic solid, Fig. la, and secondly for a structure located close to a
free horizontal surface (the ground surface for a shallow buried pipe), Fig. lb.

The study commences with the presentation of a closed form solution for buried
circular pipe buckling for the simplified case of a circular envelope of elastic solid, Fig. Ie.
A parametric study of the problem based on that solution is then described where factors
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Fig. 1. Geometry of the buried pipe problem. a. Deeply buried pipe in rectangular envelope.

b. Shallow buried pipe. c. Deeply buried pipe in circular envelope.

such as the width of the envelope of stiffer material and the modulus of that stiffer material
and the surrounding material are examined.

Finite element analysis (Moore, 1987), is then used to examine the buckling strength
of structures with more general geometry. Structures of both circular and elliptical shape
are considered in envelopes of high modulus solid of various geometries.

The solutions presented will be used in a separate study to examine the stability of
flexible metal culverts. After validation using laboratory or field data, this material may be
used to extend the general design approach previously reported by Moore et al. (1988) for
these structures. The solutions may also have other applications to cylinders with elastic
support.

DEEPLY BURIED CIRCULAR CYLINDERS

Problem description
Figure Ic shows a circular cylinder of radius r and flexural stiffness £1 buried in an

envelope of elastic solid. Typical backfill envelopes for buried pipes are approximately
rectangular in shape. For design purposes a rectangular envelope can be conservatively
modelled using a ring of the select backfill. For select backfill with modulus higher than the
surrounding soil, the ring width W is chosen to be the minimum distance from the pipe to
the lower stiffness material. For select backfill with lower modulus than the soil placed
beyond it, ring width W is chosen to be the maximum distance from pipe to that stiffer
material beyond.

Previous studies indicate that if burial depth h exceeds the pipe diameter 2r it is also
reasonable to neglect the proximity of the ground surface (Moore, 1987). For that case, the
material outside the select backfill is modelled with very distant boundaries. The select
material placed adjacent to the pipe is assigned elastic shear modulus Gs and Poisson's ratio
VS' The extensive zone of elastic material beyond that is assigned elastic shear modulus Go
and Poisson's ratio vo, Fig. lc.

Loading
The assessment of structural stability is often undertaken in two steps. Firstly, static

analysis of the system is used to determine stress resultants which develop in the structure
at working loads. Secondly, geometrically or materially nonlinear analysis is used to deter
mine the stress resultants which lead to structural instability. Stability is maintained pro
vided the stress resultants at working loads are less than those that cause collapse.

For the buried cylinder problem, hoop thrust develops around the pipe circumference
as a result of earth loads and live loads. The present paper focuses on the thrusts which
cause elastic instability. It is assumed that existing closed form and numerical procedures
can be used to determine the actual thrusts which develop [Hoeg (1968) examined buried
circular cylinders, Moore (l988b) considered buried elliptical cylinders, and Katona et al.
(1976) examined shallow buried structures of various shapes].
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Uniform thrust solutions
While the thrusts which develop around the circumference of a buried cylinder are

generally nonuniform, it has been established that buckling solutions based on uniformly
distributed hoop thrust provide reasonable, conservative measures of structural stability
[since one wavelength of the critical deformation mode usually lies within the region of
maximum thrust (Moore and Booker, 1985b; Moore, 1989)].

For the sake of simplicity, this study presents solutions for uniformly distributed
thrust. To use these solutions for stability assessment of real structures, the critical thrust
for a uniformly stressed cylinder should be compared with the maximum thrust that
develops in the real structure at working loads.

Closedform solution
Linear buckling theory is used to characterize the elastic stability of the solid-structure

system. Following previous studies (Moore and Booker, 1985a, b) the radial and cir
cumferential pipe deformations wand v and the radial and tangential tractions at the solid
structure interface (T and! are represented as harmonic functions of (), the angular position
on the pipe circumference, Fig. Ic,

w = L Wn cos n()
n ~ 0,2,3, ...

v = L Vn sin n()
n = 2.3 ...

(T = L (Tn COS n()
n = 0,2,3, ..

r = L !n sinn().
n = 2,3,

(1)

(2)

Using the shell theory of Herrmann and Armenakas (1962), stiffness relationships can be
developed which relate the structural deformations to the interface tractions for harmonic
n and uniform thrust N. Linear elastic continuum mechanics, for example Timoshenko and
Goodier (1970), can be used to determine stiffness equations which relate the interface
deformations with the interface tractions for the nonuniform elastic continuum surrounding
the cylinder. Considering equilibrium and compatibility at the interface, the uniform com
pressive thrust which causes elastic instability can be evaluated as

(
EI(n2 -l) )

N=I r2 +2GsrX. (3)

This expression depends on the cylinder modulus E and second moment of area of the
cylinder I, the shear modulus of the soil G" and two functions of n, namely I and X.

The variable I quantifies the effect of "load behaviour" on the stability of the cylindrical
shell, as discussed in detail by Moore and Booker (1985a). If the tractions (T and r at each
point A on the solid-structure interface do not rotate with the shell surface as it deforms
(Fig. 2a), the behaviour is referred to as "constant directional" and

(4)

Alternatively the tractions (T and! may rotate with the interface to remain normal and
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Fig. 2. Load behaviour at the solid-structure interface during buckling deformation. a. Direction
of tractions is constant relative to fixed axes. b. Tractions rotate to remain normal and tangential

to interface.

tangential to the cylinder surface (Fig. 2b), for which

1=1. (5)

Previous studies reveal that this load behaviour is not significant once there is a reasonable
level of solid support (Moore and Booker, 1985a). All results presented in this paper are
for the specific case of "constant directional" load behaviour [eqn (4)].

The variable X works with Gs in eqn (3) to quantify the level of solid resistance to
structural deformations. Flexibility relationships have been developed elsewhere between
boundary tractions and displacements for an annulus of elastic material (Moore, 1985).
These have been used to determine the restraint provided to a flexible cylinder located at
the centre of the nonuniform elastic solid shown in Fig. lc.

For the case of a smooth pipe, there is compatibility of radial displacement only and
zero shear stress at the solid-structure interface. Analysis reveals that for smooth interface

(6)

For the case of a rough pipe where the pipe is bonded to the solid at the interface, there is
full compatibility of radial and circumferential displacements and full transfer of shear
stress across the interface. In that case

The quantities SJ, S2 and S3 are defined as follows:

w
p. = 1+

r

2(l-vs)B+C
D] = (l+n)C

(7)

(8)

(9)

(10)

(11)

(12)
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2(1-vs)A+C
D 2 = (l-n)C

2(1-Vs)B-CJl-2n-2(1-~)

D 3 = C(l +n)

2(I-vs)A-C Jl 2n
-

2
( 1+ ~(3-4Vo) )

D 4 = C(l-n)

2(1-vs)B
Xl = (I+n)C

2(1-vs)A
X 2 = (l-n)C
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(13)

(14)

(IS)

(16)

(17)

(18)

(19)

(20)

(21)

After substitution of (6) or (7), eqn (3) must be minimized with respect to n to determine
the critical harmonic ncril and the lowest and most critical thrust Ncrit ' Critical thrust Ncrit

can be compared with expected thrust in the structure to estimate stability. The critical
harmonic ncril can be used to estimate the likely buckling wavelength, A. = 2nr/ncril'

For the case where Jl = 00 or Gs = Go and Vs = vo' then the two expressions for Xrevert
to the solutions for uniform homogeneous continuum (Moore and Booker, 1985a)

for bonded interface and

X= 2n(l-vs)+(1-2vs)

(22)

(23)

when the interface is perfectly smooth. The accuracy of the solution is further verified later
in the report through comparisons with finite element results.

Introduction to parametric study
The closed form solution can be used to examine the influence of the size of the ring

of stiff material and the stiffness of the surrounding material. It is convenient to normalize
critical thrust Ncrit for pipes in an envelope of stiff material using critical thrust N:ril for
pipes deeply buried in an infinitely large envelope of that material,

(24)

Solutions for N';:it have been reported elsewhere (Forrestal and Herrmann, 1965; Moore
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Fig. 3. Correction factor Rh for pipe in circular envelope--effect of Poisson's ratio and interface
condition.

and Booker, 1985a,b), and the factor Rh directly quantifies the effect of the geometry of the
zone of higher modulus solid and the difference in elastic parameters of the two solid
materials. The design procedure of Moore et al. (1988) mentioned earlier is expressed
directly in terms of Rh, so that the solutions for Rh presented here are consistent.

Effect of interface and Poisson's ratio
To commence the study, consider how the interface condition and Poisson's ratio of

the solid adjacent to the pipe Vs and surrounding material Vo influence stability. Solutions
are shown in Fig. 3 for both bonded and smooth interface conditions, for Go/Gs = 0 and
0.4, for Vs = Vo equal to 0.25 and 0.48 and with W/r = 0.3. Also shown are a selection of
critical mode numbers ncrit.

All curves show slope discontinuities associated with changes in critical mode ncrit' This
is typical of linear buckling solutions based on harmonic analysis. Since values of
Rh = Ncrit/N':::it are presented however, slope discontinuities arise from mode changes in the
solutions for both the numerator Ncrit and the denominator N':::it.

Clearly, the effect of a zone of lower modulus material around the envelope of higher
modulus soil is to reduce the restraint the soil provides to the cylinder. This can reduce
critical hoop thrust, and correspond to a critical buckling mode which is substantially lower
(i.e. buckle wavelength that is substantially longer) at a given value of EI/Gsr

3
• For low

values of Go/G., the long wavelength mode ncrit = 2 is critical over a wide range of EI/Gsr
3

values.
For Go/Gs = 0.4, the influence of the interface condition and Poisson's ratio is not very

significant. It appears that the smooth interface condition yields a slightly more conservative
result.

For Go/Gs = 0, the influence of Poisson's ratio is still insignificant, but the interface
condition now has a significant effect on the correction factor for low values of EI/Gsr

3 (i.e.
less than 0.01).

While it is difficult to determine the precise nature of the interaction at the solid
structure interface of a buried structure during buckling collapse, it has been found through
comparisons of theory with laboratory tests on soil supported pipes that the bonded
interface condition is most appropriate (Moore, 1989). Poisson's ratio effect is not very
significant, so a value of Vs = Vo = 0.3 has been employed with the bonded interface con
dition for the remainder of the study.
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Fig. 4a. Correction factor Rh for pipe in circular envelope-Wjr = 0.1.
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Fig. 4b. Correction factor Rh for pipe in circular envelope-Wjr = 0.2.
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General parametric solution
Values of factor Rh for a range of envelope geometries W/r, modulus ratios Go/G. and

normalized pipe stiffnesses EI/G.r3 are given in Figs 4a-d. Solutions for Rh are obtained for
W/r of 0.1, 0.2, 0.5 and 1.0 and for shear modulus ratios Go/G. of 0, 0.1, 0.2, 0.5,1.0 and
1.5.

For Go/G. = I the solid is homogeneous so the correction factor Rh is unity. If the
solid immediately adjacent to the structure is stiffer than the material beyond it, then Rh is
less than unity. If the solid material adjacent to the structure is less stiff than the surrounding
material, then Rh is greater than unity. For Go/G. = 0, the ring of solid material is effectively
surrounded by a material which provides no resistance to movement.

An examination ofthe results also reveals that the correction factor Rh is only important
for a limited range of EI/G.r3 values. The range limits are influenced by both the thickness
ofthe envelope W/r and the modulus ratio Go/G•. For this circular envelope and for typical
flexible pipes where 10-5 < EI/G.r3 < 10-2

, there is no significant reduction in buckling
strength due to poor material beyond the stiff solid adjacent to the pipe provided W/r is at
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Fig. 4<1. Correction factor r. for pipe in circular envelope--Wlr "" I.

least equal to 1, Fig. 4d. This provides some support for empirical guidelines recommending
the use of good quality backfill soil extending one half span beyond a flexible metal culvert
(OHBDC, 1991). Structures could perhaps be designed with smaller backfill envelopes using
Figs 4a--d or the closed form solution.

FINITE ELEMENT SOLUTIONS FOR SHALLOW BURIED STRUCTURES

Introduction
Flexible culverts with complex geometry are most easily analysed using the finite

element method. The finite element analysis of critical thrust for buried flexible structures
has been described previously in relation to pipes buried close to the ground surface (Moore,
1987) and noncircular pipes (Moore, 1988a,c). Briefly, the solid is modelled with six noded
«linear strain" triangular elements and the boundaries of the solid are placed sufficiently
far away so as to minimize boundary effects. The solid is represented as a linear elastic
material. In the present study, the previous work is extended to include the effect of
nonuniform modulus.
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Figure 5 shows details of two of the meshes used for the finite element study of pipe
buckling. Figures 5a and 5b show a complete picture and a detail of the first mesh, and
Figs 5c and 5d show a complete picture and detail of the second. The meshes are designed
to extend a sufficient distance away from the cylinder so that the external boundary does
not significantly affect the estimates of critical hoop thrust.

The structural elements as well as the continuum elements directly adjacent to the
structure must be sufficiently fine so as to model the buckling deformations. For the mesh
in Figs 5a and 5b, there are 64 structural elements used around the half-circle. This permits
accurate solutions involving any buckling wavelength down to A~ 2nr/20, and solutions
for thrust within 2% for 2nr/20 > A > 2nr/30. For the mesh in Figs 5c and 5d, there are 96
structural elements used around the half-circle. This permits accurate solutions involving
any buckling wavelength down to A~ 2nr/32, and solutions for thrust within 2% for
2nr/32 > A > 2nr/44. Most solutions for critical thrust presented in this report are for high
A (errors would be too small to detect on an xy-plot of results). However, some solutions
at EI/G.r < 0.0002 are accurate to 2% only.

Comparison with closedform solutions
To demonstrate the effectiveness of the finite element solution, as well as providing

evidence to verify the closed form buckling solution presented earlier in the paper, solutions
for critical thrust have been calculated using the finite element and closed form solutions
and compared in Fig. 6. The finite element solutions are obtained using the mesh shown in
Fig. 5b with the inner three rings of solid elements forming the envelope of G. material,
W/r = 0.5. The elastic material surrounding that ring is assigned shear modulus Go, where
Go/G. alternately equals 0.1, 0.3 and 1. The solid and structure are modelled as bonded
together at the interface. The values of critical thrust have all been normalized using

(25)

Clearly there is a close match between all of the closed form and finite element results. The
only solutions which show some deviation are those for Go/G. = I where the finite element

SAS 31-22-C
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Fig. 5b. Detail of first finite element mesh.

solution is slightly less. The reason for this discrepancy is the nature of the external
boundary of the finite element mesh which is assumed stress free. To confirm this, a closed
form solution is shown as a dashed line on Fig. 6 for a uniform ring of elastic solid with
stress free boundary at radial distance 8r, the same location as the exterior boundary of the
finite element mesh (Go/G. is set to zero and W/r to 8). The closed form solution then
matches the finite element solution exactly. The solutions for Go/G. < 1 and W/, = 0.5
match better since the introduction of a zone of more compressible Go material reduces the
boundary effect.

Shape of the high modulus envelope
The finite element analysis can be used to examine critical thrust for pipes buried in

envelopes of various shapes. The mesh shown in Figs 5c and 5d has been used to examine
pipe stability for square and rectangular envelopes. Figure 7 shows critical thrust Ncrit

normalized using Nb where Go/Gs= 0.1. In addition to three cases of square envelopes, one
case of rectangular zone and three cases of circular envelope (calculated using the closed
form solution) have been included.

Examination of Fig. 7 reveals that:

• solutions for the mesh shown in Figs 5c and 5d are reasonable given the match of
finite element and closed form solutions for extensive high modulus material,
W/r> 4. The square zone solutionis slightly higher for the range 0.08 < EI/Gs,3 < 1,
since the exterior boundary of the finite element mesh is actually at W/, = 4 and is
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Fig. 5d. Detail of second finite element mesh.
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Fig. 7. Comparison of finite element solutions for normalized critical thrust showing the influence
of high modulus solid geometry.

modelled as smooth and rigid. Any errors that occur for Wlr < 4 will be even smaller
since the more compressible Go material will reduce the boundary effect, and the
errors are unnoticeable once smaller and more realistic values of EIIG.r3 are con
sidered;

• as could be expected for Wlr equal to 0.2 and 0.5, the square zone incorporates
more of the high modulus material so that it produces higher critical thrust than the
annulus of G. material with the same minimum thickness Wlr. For the cases shown,
the maximum difference in critical thrust for the square and circular zone results is
about 30%;

• for rectangular zone with thickness over the crown and under the invert Wvlr equal
to 0.2, and thickness adjacent to the structure Whir equal to 0.5, the solution lies
between the square envelope solutions with Wh equal to those two values. As
structural stiffness EIIG.r decreases, the wavelength of the buckling deformations
decreases, so the behaviour at the springline becomes more dominant and the
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solution approaches that of the square envelope with the lower amount of stiff Gs

material, WI' = 0.2.

Estimates of critical thrust for structures with different envelope geometries could be
obtained using square zone or annular zone solutions for Rh, where Wlr is set to the
minimum width of the Gs material adjacent to the structure. These solutions would be
somewhat, but not excessively, conservative.

Burial depth
One geometrical feature commonly present in large span buried flexible pipes or

culverts, is shallow burial such that cover height above the crown h may be only a fraction
of the pipe radius. In order to examine this phenomenon, the mesh shown in Figs 5c and
5d has been used to obtain solutions for Rh with material removed from the mesh above
the pipe crown to model cover heights hlr = 0.1, 0.2, 0.5, 1 and 2:

• Fig. 8a shows solutions for Wlr = 0.2 and GolGs = 0.1;
• Fig. 8b shows solutions for Wlr = 0.5 and GolGs= 0.1 ;
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Fig. 8c. Correction factor Rh for shallow buried pipe in square envelope--Wlr = I, GolG, = 0.1.
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Fig. 9a. Correction factor Rh for shallow buried pipe in square envelope-WIT = 0.2, Go/G, = 0.3.

• Fig. 8c shows solutions for Wlr = I and GolG, = 0.1 ;
• Fig. 9a shows solutions for Wlr = 0.2 and GolG, = 0.3;
• Fig. 9b shows solutions for Wlr = 0.5 and GolG, = 0.3;
• Fig. 9c shows solutions for Wlr = 1 and GolG, = 0.3;
• Fig. 10 shows solutions for Wlr = 00 or GolG, = 1.

Using these solutions, the R h value for various burial depths hlr, envelope geometries Wlr
and modular ratios GolG, can be estimated. An examination of the figures listed above
reveals that there is a complex inter-relationship between critical thrust, burial depth,
envelope geometry and modular ratio. Where burial depth h is less than envelope width,
then the stability is most affected by the cover condition, and decreases in Wlr or GolG, are
not particularly significant. Alternatively, if dimension Wlr is substantially less than cover
height hlr then that dimension and the modular ratio GolG, are most important. Many
problems in practice will have h ~ W, so that both the burial depth and the geometry of
the zone of G, material influence the structural stability.



Buckling strength of flexible cylinders

1.1

.9

.8

.7

• b

or. .5Q:

· 4

· 3
h/r=l.l

· 2

· 1
Go/Gs =I.3 W/r=I.5

.01~51~41~31~21~11~ 1~

EI

G r 3
5

Fig. 9b. Correction factor Rh for shallow buried pipe in square envelope-Wlr = 0.5, GolG, = 0.3.
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Cylinder shape
The possibility of buckling failure often needs to be considered for culverts and pipes

whose cross~section is elliptical or some other shape. Previous theoretical (Moore, 1987)
and experimental (Moore, 1989) work on flexible structures buried in uniform elastic solid
has demonstrated that the stability of an elliptical pipe can be estimated using solutions
developed for circular pipe provided:

• the dimension r used to normalize the pipe response is taken as the circumference
of the pipe divided by 2n, i.e. the radius of a circle of equal circumference ;

• correction factors for shallow burial Rh are normalized using half the pipe span
DH /2. Therefore, solutions presented in Fig. 10 can be employed provided hlr is read
as 2h/DH •

To investigate the behaviour of elliptical pipe buried in nonuniform elastic solid, Fig. 11
presents solutions for elliptical pipe buried in a rectangular zone of stiff solid with envelope
thickness adjacent to the culvert and above and below, Wlr = 0.2. The burial depths
considered are 2h/DH = 0.1, 0.5 and 2. Also shown are the solutions for a circular culvert
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Fig. 11. Normalized thrust for shallow buried elliptical and circular pipes in nonuniform elastic
solid---ellipse has DH/Dv = 2.

with square zone of G. material with the same minimum thicknesses, as well as circular
pipe and elliptical pipe solutions for uniform elastic ground. Modular ratio examined is
Go/G. = 0.1, and the ellipse considered has span on rise ratio DH/Dv of2.

Firstly, the elliptical and circular pipe solutions shown in Fig. 11 for deep burial in
uniform material confirm that there is little significant difference in the critical thrust
provided the solutions are normalized as described above. The comparisons for shallow
buried structures in nonuniform solid show differences, but these are not particularly
significant. For 2h/DH = 0.1 the elliptical pipe has lower normalized thrust around
EI/G.r = 10-3

, but otherwise the normalized thrust for the circular pipe is similar or lower.
Generally, it appears reasonable to use the circular pipe solutions to predict elliptical pipe
response.

Modulus that varies with depth
To finish this study of elastically supported cylinder stability, the behaviour of a pipe

buried in solid that has modulus which varies linearly with depth (a "Gibson" material) is
considered,
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Fig. 12. Normalized thrust for shaIlow buried circular pipes in Gibson and uniform solids-for
Gibson solid the modulus varies linearly with depth.

Gs = Go+gz (26)

for surface modulus Go, modulus gradient g and depth z. Figure 12 shows normalized
critical thrust for a range of pipe stiffnesses and three different burial depths, hlr equals 0.1,
0.5 and 2. The solutions presented are for the particular case of Go = gr and have been
normalized using Gs = Go+gh, the shear modulus of the solid at the pipe crown.

Also shown in Fig. 12 are solutions for uniform solid Gs = Go+gh and the same
three burial depths. These match the Gibson solutions reasonably well, particularly in the
important range EIIGsr

3 < 10-2
• It appears that the uniform solid solutions can be used

under these circumstances, where solid modulus at the crown is chosen to characterize the
whole of the solid material. For real granular soil materials, "arching" around a shallow
buried structure can be expected to reduce stresses and therefore modulus immediately
above the crown. If this stress redistribution is considered in the analysis, the choice of
modulus immediately above the crown seems likely to provide even more conservative
solutions.

CONCLUSIONS

The buckling strength of buried flexible structures has been examined using linear
buckling theory for the shell structure with the soil represented as an elastic solid. In
particular, the effect of nonuniform elastic modulus on the buckling strength has been
considered. A closed form solution for a two-zone solid was presented, in addition to results
obtained using the finite element method. Many of the solutions were presented using the
correction factors Rh which expresses the critical hoop thrust Ncri! for the pipe relative to
critical thrust for a pipe buried in uniform solid.

Firstly, use of the closed form solution for pipe buried in a ring of stiff elastic solid
revealed that Poisson's ratio for the solid does not significantly affect the correction factor
Rh • Under some conditions, the interface condition between the solid and the structure was
found to be important.

Using the finite element solution, the behaviour of pipes buried in square and rec
tangular envelopes of higher modulus solid were examined. It was found that in the
absence of a solution for any particular envelope geometry, it is reasonable to use solutions
developed for envelope with uniform thickness equal to the minimum for the real problem.
Correction factor Rh was also determined for various shallow buried nonuniform elastic
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solid configurations, and cases involving elliptical structures and solid modulus which varies
linearly with distance from the free surface. A technique for normalizing the solutions was
presented which permits elliptical pipe problems to be analysed using circular pipe solutions.
It was also found that by using the solid modulus at the pipe crown, the behaviour of a
pipe in a Gibson material could be estimated using the solutions for uniform modulus.
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